On the approximation of the limit cycles function
نویسندگان
چکیده
We consider planar vector fields depending on a real parameter. It is assumed that this vector field has a family of limit cycles which can be described by means of the limit cycles function l. We prove a relationship between the multiplicity of a limit cycle of this family and the order of a zero of the limit cycles function. Moreover, we present a procedure to approximate l(x), which is based on the Newton scheme applied to the Poincaré function and represents a continuation method. Finally, we demonstrate the effectiveness of the proposed procedure by means of a Liénard system.
منابع مشابه
Effect of different yield functions on computations of forming limit curves for aluminum alloy sheets
In this article, the effect of different yield functions on prediction of forming limit curve (FLC) for aluminum sheet is studied. Due to importance of FLC in sheet metal forming, concentration on effective parameters must be considered exactly in order to have better theoretical prediction comparing experimental results. Yield function is one of the factors which are improved by adding new coe...
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملApplication of Case I and Case II of Hill’s 1979 Yield Criterion to Predict FLD
Forming limit diagrams (FLDs) are calculated based on both the Marciniak and Kuczynski (M-K) model and the analysis proposed by Jones and Gillis (J-G). J-G analysis consisted of plastic deformation approximation by three deformation phases. These phases consisted of homogeneous deformation up to the maximum load (Phase I), deformation localization under constant load (phase II) and local necki...
متن کاملReliability and Sensitivity Analysis of Structures Using Adaptive Neuro-Fuzzy Systems
In this study, an efficient method based on Monte Carlo simulation, utilized with Adaptive Neuro-Fuzzy Inference System (ANFIS) is introduced for reliability analysis of structures. Monte Carlo Simulation is capable of solving a broad range of reliability problems. However, the amount of computational efforts that may involve is a draw back of such methods. ANFIS is capable of approximating str...
متن کاملSome New Analytical Techniques for Duffing Oscillator with Very Strong Nonlinearity
The current paper focuses on some analytical techniques to solve the non-linear Duffing oscillator with large nonlinearity. Four different methods have been applied for solution of the equation of motion; the variational iteration method, He’s parameter expanding method, parameterized perturbation method, and the homotopy perturbation method. The results reveal that approxim...
متن کامل